Harmonic Mean Calculator for grouped data
Harmonic mean is an important measure of central tendency of the data. Harmonic mean is used for calculating average of ratios. Most commonly used ratios are speed and time, work and time, dividend per share of companies, cost and units materials, etc.
Use this calculator to find the Harmonic Mean for grouped data(frequency distribution).
Calculator
Harmonic Mean for Grouped Data Calculator | |
---|---|
Type of Frequency Distribution | DiscreteContinuous |
Enter the Classes for X (Separated by comma,) | |
Enter the frequencies (f) (Separated by comma,) | |
Harmonic Mean Results | |
Number of Observation (N): | |
Harmonic Mean : | |
frequency distribution : | |
How to find harmonic mean of grouped data?
Step 1 - Select type of frequency distribution (Discrete or continuous)
Step 2 - Enter the Range or classes (X) seperated by comma (,)
Step 3 - Enter the Frequencies (f) seperated by comma
Step 4 - Click on “Calculate” for harmonic mean calculation
Step 5 - Gives output as number of observation (n)
Step 6 - Calculate harmonic mean
Step 7 - Calculate frequency distribution
Harmonic Mean formula for grouped data
Let $x_1, x_2, \cdots , x_n$
have frequencies $f_1, f_2, \cdots ,f_n$
respectively, then the harmonic mean formula for grouped data is given by
$$ \begin{equation*} \frac{1}{HM} = \frac{1}{N}\sum_{i=1}^{n}\frac{f_i}{x_i}\quad \mbox{ where }N = \sum_{i=1}^{n} f_i \end{equation*} $$
In case of continuous frequency distribution, $x_i$’s are the mid-values of the respective classes.
Harmonic mean is undefined if any one value of the variable is zero.
Below are the few numeri Harmonic Mean for Grouped Data examples with step by step guide on how to calculate it.
Harmonic Mean for Grouped Data Example 1
Compute harmonic mean for the following frequency distribution.
x | 10 | 15 | 20 | 25 | 30 |
---|---|---|---|---|---|
f | 3 | 12 | 25 | 10 | 5 |
Solution
$x$ | Freq ($f$) | $f/x$ | |
---|---|---|---|
10 | 3 | 0.3 | |
15 | 12 | 0.8 | |
20 | 25 | 1.25 | |
25 | 10 | 0.4 | |
30 | 5 | 0.1667 | |
tot | Total | 55 | 2.9167 |
The harmonic mean of $X$ is
$$ \begin{aligned} HM &= \dfrac{N}{\sum_{i=1}^{n} \dfrac{f_i}{x_i}}\\ &= \frac{55}{\frac{3}{10}+\frac{12}{15}+\frac{25}{20}+\frac{10}{25}+\frac{5}{30}}\\ &= \frac{55}{2.9167}\\ &= 18.8571 \end{aligned} $$
Harmonic Mean for Grouped Data Example 2
Find harmonic mean for the following grouped data.
x | 10-15 | 15-20 | 20-25 | 25-30 | 30-35 |
---|---|---|---|---|---|
f | 2 | 13 | 21 | 14 | 5 |
Solution
Class | mid-value ($x$) | Freq ($f$) | $f/x$ | |
---|---|---|---|---|
10-15 | 12.5 | 2 | 0.16 | |
15-20 | 17.5 | 13 | 0.7429 | |
20-25 | 22.5 | 21 | 0.9333 | |
25-30 | 27.5 | 14 | 0.5091 | |
30-35 | 32.5 | 5 | 0.1538 | |
tot | Total | 55 | 2.4991 |
The harmonic mean of $X$ is
$$ \begin{aligned} HM &= \dfrac{N}{\sum_{i=1}^{n} \dfrac{f_i}{x_i}}\\ &= \frac{55}{\frac{2}{12.5}+\frac{13}{17.5}+\frac{21}{22.5}+\frac{14}{27.5}+\frac{5}{32.5}}\\ &= \frac{55}{2.4991}\\ &= 22.0077 \end{aligned} $$
Harmonic Mean for Grouped Data Example 3
Find the Harmonic Mean of distribution of weights of 75 students at virtual University in the table:
Weight | Frequency |
---|---|
110 - 119 | 1 |
120 - 129 | 4 |
130 - 139 | 17 |
140 - 149 | 28 |
150 - 159 | 25 |
Solution
Class | mid-value ($x$) | Freq ($f$) | $f/x$ | |
---|---|---|---|---|
110-119 | 114.5 | 1 | 0.0087 | |
120-129 | 124.5 | 4 | 0.0321 | |
130-139 | 134.5 | 17 | 0.1264 | |
140-149 | 144.5 | 28 | 0.1938 | |
150-159 | 154.5 | 25 | 0.1618 | |
tot | Total | 75 | 0.5228 |
The harmonic mean of $X$ is
$$ \begin{aligned} HM &= \dfrac{N}{\sum_{i=1}^{n} \dfrac{f_i}{x_i}}\\ &= \frac{75}{0.5228}\\ &= 143.4473\;\; minutes \end{aligned} $$
Harmonic Mean for Grouped Data Example 4
Following is the frequency distribution about the weight of earheads in grams:
Weight of earheads in gms | No. of earhead |
---|---|
40 - 60 | 6 |
60 - 80 | 8 |
80 - 100 | 35 |
100 - 120 | 55 |
120 - 140 | 30 |
140 - 160 | 15 |
160 - 180 | 12 |
180 - 200 | 9 |
Calculate harmonic mean for the given grouped data.
Solution
Class | mid-value ($x$) | Freq ($f$) | $f/x$ | |
---|---|---|---|---|
40-60 | 50 | 6 | 0.12 | |
60-80 | 70 | 8 | 0.1143 | |
80-100 | 90 | 35 | 0.3889 | |
100-120 | 110 | 55 | 0.5 | |
120-140 | 130 | 30 | 0.2308 | |
140-160 | 150 | 15 | 0.1 | |
160-180 | 170 | 12 | 0.0706 | |
180-200 | 190 | 9 | 0.0474 | |
tot | Total | 170 | 1.5719 |
The harmonic mean of $X$ is
$$ \begin{aligned} HM &= \dfrac{N}{\sum_{i=1}^{n} \dfrac{f_i}{x_i}}\\ &= \frac{170}{1.5719}\\ &= 108.1493\;\; grams \end{aligned} $$
Harmonic Mean for Grouped Data Example 5
Following is the data about the dividend yield (in percent) for the number of companies:
Dividend Yield (in percent) | No. of Companies |
---|---|
2 - 6 | 10 |
6 - 10 | 12 |
10 - 14 | 18 |
14 - 18 | 8 |
Find harmonic mean for the dividend yield.
Solution
Class | mid-value ($x$) | Freq ($f$) | $f/x$ | |
---|---|---|---|---|
2-6 | 4 | 10 | 2.5 | |
6-10 | 8 | 12 | 1.5 | |
10-14 | 12 | 18 | 1.5 | |
14-18 | 16 | 8 | 0.5 | |
tot | Total | 48 | 6 |
The harmonic mean of $X$ is
$$ \begin{aligned} HM &= \dfrac{N}{\sum_{i=1}^{n} \dfrac{f_i}{x_i}}\\ &= \frac{48}{6}\\ &= 8\;\; percent \end{aligned} $$
Conclusion
I hope you like step by step guide on how to use Harmonic Mean Calculator for Grouped Data with several numerical examples.