Simple Linear Regression From sum and sum of squares
Use this calculator to fit a simple linear regression model from summarized data.
Simple Linear Regression | |
---|---|
No. of Pairs of Observations ($n$) | |
Sum of X : ($\sum x$) | |
Sum of Y : ($\sum y$) | |
Sum of X squares : ($\sum x^2$) | |
Sum of Y squares : ($\sum y^2$) | |
Sum of product of X and Y : ($\sum xy$) | |
Results | |
Mean of X ($\overline{x}$) | |
Mean of Y ($\overline{y}$) | |
Sxx ($S_{xx}$) | |
Syy ($S_{yy}$) | |
Sxy ($S_{xy}$) | |
Correlation between X and Y ($r$) | |
Intercept ($\hat{\beta}_0$) | |
Slope ($\hat{\beta}_1$) | |
Regression equation | |
Simple Linear Regression
Another method
$$ \begin{aligned} S_{xx}=\sum_{i=1}^n x_i^2- \frac{(\sum_i x_i)^2}{n} \end{aligned} $$
$$ \begin{aligned} S_{xy}=\sum_{i=1}^n x_iy_i- \frac{(\sum_i x_i)(\sum_i y_i)}{n} \end{aligned} $$
$$ \begin{aligned} b=\frac{S_{xy}}{S_{xx}} \end{aligned} $$
$$ \begin{aligned} a=\overline{y}-b \overline{x} \end{aligned} $$