To calculate cosine similarity in R, you can use the cosine()
function from the lsa
package.
Cosine similarity measures the cosine of the angle between two non-zero vectors, providing a metric that quantifies how similar the vectors are.
In this article, we will explore how to calculate cosine similarity in R using the cosine()
function.
Method: Use cosine() Function
The cosine()
function in R is used to calculate the cosine similarity between vectors or matrices. Here’s the syntax:
library(lsa)
cosine(a, b)
a
,b
: Vectors or matrices
The following examples show how to calculate cosine similarity using the cosine()
function in R.
Use cosine() to Calculate Cosine Similarity Between Vectors
Let’s see how to calculate cosine similarity using the cosine()
function in R:
# Load library
library(lsa)
# Define vectors
a <- c(78, 85, 89, 96, 74, 75)
b <- c(65, 66, 64, 69, 70, 61)
# Calculate cosine similarity
similarity <- cosine(a, b)
# Display cosine similarity
print(similarity)
Output: 👇️
[,1]
[1,] 0.9982161
In this example, the cosine()
function calculates the cosine similarity between vectors a
and b
.
Use cosine() to Calculate Cosine Similarity Between Matrices
Let’s see how we can calculate cosine similarity between matrices in R:
# Load library
library(lsa)
# Define vectors
a <- c(78, 85, 89, 96, 74, 75)
b <- c(65, 66, 64, 69, 70, 61)
c <- c(23, 25, 26, 19, 21, 18)
d <- c(45, 41, 35, 36, 39, 48)
# Define matrix
matrix1 <- cbind(a, b, c, d)
# Calculate cosine similarity
similarity_matrix <- cosine(matrix1)
# Display cosine similarity matrix
print(similarity_matrix)
Output: 👇️
a b c d
a 1.0000000 0.9954716 0.9890725 0.9812092
b 0.9954716 1.0000000 0.9898941 0.9893902
c 0.9890725 0.9898941 1.0000000 0.9790813
d 0.9812092 0.9893902 0.9790813 1.0000000
In this example, the cosine()
function calculates the cosine similarity between the columns of the matrix matrix1
.