Moment coefficient of kurtosis for grouped data
Let $(x_i,f_i), i=1,2, \cdots , n$
be given frequency distribution. The mean of $X$ is denoted by $\overline{x}$ and is given by
$$ \begin{eqnarray*} \overline{x}& =\frac{1}{N}\sum_{i=1}^{n}f_ix_i \end{eqnarray*} $$
Formula
The moment coefficient of kurtosis $\beta_2$ is defined as
$\beta_2=\dfrac{m_4}{m_2^2}$
The moment coefficient of kurtosis $\gamma_2$ is defined as
$\gamma_2=\beta_2-3$
where
$N$
total number of observations$\overline{x}$
sample mean$m_2 =\frac{1}{N}\sum_{i=1}^n f_i(x_i-\overline{x})^2$
is second central moment$m_4 =\frac{1}{N}\sum_{i=1}^n f_i(x_i-\overline{x})^4$
is fourth central moment
Example 1
Following tables shows a frequency distribution of daily number of car accidents at a particular cross road during a month of April.
No.of car accidents ($x$) | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|
No. of days ($f$) | 9 | 11 | 6 | 3 | 1 |
Compute moments coefficient of kurtosis for the above frequency distribution.
Solution
$x$ | Freq ($f$) | $f*x$ | |
---|---|---|---|
2 | 9 | 18 | |
3 | 11 | 33 | |
4 | 6 | 24 | |
5 | 3 | 15 | |
6 | 1 | 6 | |
Total | 30 | 96 |
The mean of $X$ is
$$ \begin{aligned} \overline{x} &=\frac{1}{N}\sum_{i=1}^n f_ix_i\\ &=\frac{96}{30}\\ &=3.2 \end{aligned} $$
$x_i$ | $f_i$ | $(x_i-xb)^2$ | $f_i*(x_i-xb)^2$ | $(x_i-xb)^4$ | $f_i*(x_i-xb)^4$ | |
---|---|---|---|---|---|---|
2 | 9 | 1.44 | 12.96 | 2.0736 | 18.6624 | |
3 | 11 | 0.04 | 0.44 | 0.0016 | 0.0176 | |
4 | 6 | 0.64 | 3.84 | 0.4096 | 2.4576 | |
5 | 3 | 3.24 | 9.72 | 10.4976 | 31.4928 | |
6 | 1 | 7.84 | 7.84 | 61.4656 | 61.4656 | |
Total | 96 | 34.8 | 114.096 |
The first central moment $m_1$ is always zero.
The second central moment is
$$ \begin{aligned} m_2 &=\frac{1}{N}\sum_{i=1}^n f_i(x_i-\overline{x})^2\\ &=\frac{34.8}{30}\\ &=1.16 \end{aligned} $$
The fourth central moment is
$$ \begin{aligned} m_4 &=\frac{1}{N}\sum_{i=1}^n f_i(x_i-\overline{x})^4\\ &=\frac{114.096}{30}\\ &=3.8032 \end{aligned} $$
The coefficient of kurtosis based on moments ($\beta_2$) is
$$ \begin{aligned} \beta_2 &=\frac{m_4}{m_2^2}\\ &=\frac{(3.8032)}{(1.16)^2}\\ &=\frac{3.8032}{1.3456}\\ &=2.8264 \end{aligned} $$
The coefficient of kurtosis based on moments ($\gamma_2$) is
$$ \begin{aligned} \gamma_2 &=\beta_2-3\\ &=2.8264 -3\\ &=-0.1736 \end{aligned} $$
As the value of $\gamma_2 < 0$, the data is $\text{platy-kurtic}$.
Example 2
The following table gives the amount of time (in minutes) spent on the internet each evening by a group of 56 students.
Time spent on Internet ($x$) | 10-12 | 13-15 | 16-18 | 19-21 | 22-24 |
---|---|---|---|---|---|
No. of students ($f$) | 3 | 12 | 15 | 24 | 2 |
Compute moments coefficient of kurtosis for the above frequency distribution.
Solution
Class | $x_i$ | $f_i$ | $f_i*x_i$ | |
---|---|---|---|---|
10-12 | 11 | 3 | 33 | |
13-15 | 14 | 12 | 168 | |
16-18 | 17 | 15 | 255 | |
19-21 | 20 | 24 | 480 | |
22-24 | 23 | 2 | 46 | |
Total | 56 | 982 |
The mean of $X$ is
$$ \begin{aligned} \overline{x} &=\frac{1}{N}\sum_{i=1}^n f_ix_i\\ &=\frac{982}{56}\\ &=17.5357 \end{aligned} $$
$x_i$ | $f_i$ | $(x_i-xb)^2$ | $f_i(x_i-xb)^2$ | $(x_i-xb)^4$ | $f_i(x_i-xb)^4$ | |
---|---|---|---|---|---|---|
11 | 3 | 42.7154 | 128.1462 | 1824.6032 | 5473.8096 | |
14 | 12 | 12.5012 | 150.0144 | 156.2794 | 1875.3528 | |
17 | 15 | 0.287 | 4.305 | 0.0824 | 1.236 | |
20 | 24 | 6.0728 | 145.7472 | 36.8786 | 885.0864 | |
23 | 2 | 29.8586 | 59.7172 | 891.5345 | 1783.069 | |
Total | 56 | 487.93 | 10018.5538 |
The first central moment $m_1$ is always zero.
The second central moment is
$$ \begin{aligned} m_2 &=\frac{1}{N}\sum_{i=1}^n f_i(x_i-\overline{x})^2\\ &=\frac{487.93}{56}\\ &=8.713 \end{aligned} $$
The fourth central moment is
$$ \begin{aligned} m_4 &=\frac{1}{N}\sum_{i=1}^n f_i(x_i-\overline{x})^4\\ &=\frac{10018.5538}{56}\\ &=178.9027 \end{aligned} $$
The coefficient of kurtosis based on moments ($\beta_2$) is
$$ \begin{aligned} \beta_2 &=\frac{m_4}{m_2^2}\\ &=\frac{(178.9027)}{(8.713)^2}\\ &=\frac{178.9027}{75.9164}\\ &=2.3566 \end{aligned} $$
The coefficient of kurtosis based on moments ($\gamma_2$) is
$$ \begin{aligned} \gamma_2 &=\beta_2-3\\ &=2.3566 -3\\ &=-0.6434 \end{aligned} $$
As the value of $\gamma_2 < 0$, the data is $\text{platy-kurtic}$.