Quartile for grouped data calculator

Use Quartile for grouped data calculator to find quartiles for grouped data based on type of frequency distributio (Discrete or Continuous),classes and frequencies of ith quartile class. It gives output as First Quartile,Second Quartile and Third Quartile.

Quartiles for Grouped Data Calculator
Type of Freq. Dist. DiscreteContinuous
Enter the Classes for X (Separated by comma,)
Enter the frequencies (f) (Separated by comma,)
Results
Number of Obs. (N):
First Quartile : ($Q_1$)
Second Quartile : ($Q_2$)
Third Quartile : ($Q_3$)

Quartile formula for grouped data

Quartiles are the values of arranged data which divide whole data into four equal parts. They are 3 in numbers namely $Q_1$, $Q_2$ and $Q_3$. Here $Q_1$ is first quartile, $Q_2$ is second quartile and $Q_3$ is third quartile.

For discrete frequency distribution, $i^{th}$ quartile formula for grouped data is

$Q_i =\bigg(\dfrac{i(N)}{4}\bigg)^{th}$ value, $i=1,2,3$

where,

  • $N$ is total number of observations.

For continuous frequency distribution, $i^{th}$ quartile formula for grouped data is

$Q_i=l + \bigg(\dfrac{\dfrac{iN}{4} - F_<}{f}\bigg)\times h$; $i=1,2,\cdots,3$

where,

  • $l$ is the lower limit of the $i^{th}$ quartile class
  • $N=\sum f$ total number of observations
  • $f$ frequency of the $i^{th}$ quartile class
  • $F_<$ cumulative frequency of the class previous to $i^{th}$ quartile class
  • $h$ is the class width

Quartile for Grouped Data Example 1

A class teacher has the following data about the number of absences of 35 students of a class. Compute five number summary for the following frequency distribution.

No.of days ($x$) 2 3 4 5 6
No. of Students ($f$) 1 15 10 5 4

Solution

$x_i$ $f_i$ $cf$
2 1 1
3 15 16
4 10 26
5 5 31
6 4 35
Total 35

Quartiles

The formula for $i^{th}$ quartile for grouped data is

$Q_i =\bigg(\dfrac{i(N)}{4}\bigg)^{th}$ value, $i=1,2,3$

where $N$ is the total number of observations.

First Quartile $Q_1$ can be calculated using quartile formula for grouped data as below

$$ \begin{aligned} Q_{1} &=\bigg(\dfrac{1(N)}{4}\bigg)^{th}\text{ value}\\ &= \bigg(\dfrac{1(35)}{4}\bigg)^{th}\text{ value}\\ &=\big(8.75\big)^{th}\text{ value} \end{aligned} $$

The cumulative frequency just greater than or equal to $8.75$ is $16$. The corresponding value of $X$ is the $1^{st}$ quartile. That is, $Q_1 =3$ days.

Thus, $25$ % of the students had absences less than or equal to $3$ days.

Second Quartile $Q_2$ can be calculated using quartile formula for grouped data as below

$$ \begin{aligned} Q_{2} &=\bigg(\dfrac{2(N)}{4}\bigg)^{th}\text{ value}\\ &= \bigg(\dfrac{2(35)}{4}\bigg)^{th}\text{ value}\\ &=\big(17.5\big)^{th}\text{ value} \end{aligned} $$

The cumulative frequency just greater than or equal to $17.5$ is $26$. The corresponding value of $X$ is the $2^{nd}$ quartile. That is, $Q_2 =4$ days.

Thus, $50$ % of the students had absences less than or equal to $4$ days.

Third Quartile $Q_3$ can be calculated using quartile formula for grouped data as below

$$ \begin{aligned} Q_{3} &=\bigg(\dfrac{3(N)}{4}\bigg)^{th}\text{ value}\\ &= \bigg(\dfrac{3(35)}{4}\bigg)^{th}\text{ value}\\ &=\big(26.25\big)^{th}\text{ value} \end{aligned} $$

The cumulative frequency just greater than or equal to $26.25$ is $31$. The corresponding value of $X$ is the $3^{rd}$ quartile. That is, $Q_3 =5$ days.

Thus, $75$ % of the students had absences less than or equal to $5$ days.

Quartile for Grouped Data Example 2

The following table gives the amount of time (in minutes) spent on the internet each evening by a group of 56 students. Compute five number summary for the following frequency distribution.

Time spent on Internet ($x$) 10-12 13-15 16-18 19-21 22-24
No. of students ($f$) 3 12 15 24 2

Solution

Let $X$ denote the amount of time (in minutes) spent on the internet.

Here the classes are inclusive. To make them exclusive type subtract 0.5 from the lower limit and add 0.5 to the upper limit of each class.

Class Interval Class Boundries $f_i$ $cf$
10-12 9.5-12.5 3 3
13-15 12.5-15.5 12 15
16-18 15.5-18.5 15 30
19-21 18.5-21.5 24 54
22-24 21.5-24.5 2 56
Total 56

Quartiles

The formula for $i^{th}$ quartile for grouped data is

$Q_i =\bigg(\dfrac{i(N)}{4}\bigg)^{th}$ value, $i=1,2,3$

where $N$ is the total number of observations.

First Quartile $Q_1$ can be calculated using quartile formula for grouped data as below

$$ \begin{aligned} Q_{1} &=\bigg(\dfrac{1(N)}{4}\bigg)^{th}\text{ value}\\ &= \bigg(\dfrac{1(56)}{4}\bigg)^{th}\text{ value}\\ &=\big(14\big)^{th}\text{ value} \end{aligned} $$

The cumulative frequency just greater than or equal to $14$ is $15$. The corresponding class $12.5-15.5$ is the $1^{st}$ quartile class.

Thus

  • $l = 12.5$, the lower limit of the $1^{st}$ quartile class
  • $N=56$, total number of observations
  • $f =12$, frequency of the $1^{st}$ quartile class
  • $F_< = 3$, cumulative frequency of the class previous to $1^{st}$ quartile class
  • $h =3$, the class width

The first quartile $Q_1$ can be computed as follows:

$$ \begin{aligned} Q_1 &= l + \bigg(\frac{\frac{1(N)}{4} - F_<}{f}\bigg)\times h\\ &= 12.5 + \bigg(\frac{\frac{1*56}{4} - 3}{12}\bigg)\times 3\\ &= 12.5 + \bigg(\frac{14 - 3}{12}\bigg)\times 3\\ &= 12.5 + \big(0.9167\big)\times 3\\ &= 12.5 + 2.75\\ &= 15.25 \text{ minutes} \end{aligned} $$ Thus, $25$ % of the students spent less than or equal to $15.25$ minutes on the internet.

Second Quartile $Q_2$ can be calculated using quartile formula for grouped data as below

$$ \begin{aligned} Q_{2} &=\bigg(\dfrac{2(N)}{4}\bigg)^{th}\text{ value}\\ &= \bigg(\dfrac{2(56)}{4}\bigg)^{th}\text{ value}\\ &=\big(28\big)^{th}\text{ value} \end{aligned} $$

The cumulative frequency just greater than or equal to $28$ is $30$. The corresponding class $15.5-18.5$ is the $2^{nd}$ quartile class.

Thus

  • $l = 15.5$, the lower limit of the $2^{nd}$ quartile class
  • $N=56$, total number of observations
  • $f =15$, frequency of the $2^{nd}$ quartile class
  • $F_< = 15$, cumulative frequency of the class previous to $2^{nd}$ quartile class
  • $h =3$, the class width

The second quartile $Q_2$ can be computed as follows:

$$ \begin{aligned} Q_2 &= l + \bigg(\frac{\frac{2(N)}{4} - F_<}{f}\bigg)\times h\\ &= 15.5 + \bigg(\frac{\frac{2*56}{4} - 15}{15}\bigg)\times 3\\ &= 15.5 + \bigg(\frac{28 - 15}{15}\bigg)\times 3\\ &= 15.5 + \big(0.8667\big)\times 3\\ &= 15.5 + 2.6\\ &= 18.1 \text{ minutes} \end{aligned} $$ Thus, $50$ % of the students spent less than or equal to $18.1$ minutes on the internet.

Third Quartile $Q_3$ can be calculated using quartile formula for grouped data as below

$$ \begin{aligned} Q_{3} &=\bigg(\dfrac{3(N)}{4}\bigg)^{th}\text{ value}\\ &= \bigg(\dfrac{3(56)}{4}\bigg)^{th}\text{ value}\\ &=\big(42\big)^{th}\text{ value} \end{aligned} $$

The cumulative frequency just greater than or equal to $42$ is $54$. The corresponding class $18.5-21.5$ is the $3^{rd}$ quartile class.

Thus

  • $l = 18.5$, the lower limit of the $3^{rd}$ quartile class
  • $N=56$, total number of observations
  • $f =24$, frequency of the $3^{rd}$ quartile class
  • $F_< = 30$, cumulative frequency of the class previous to $3^{rd}$ quartile class
  • $h =3$, the class width

The third quartile $Q_3$ can be computed as follows:

$$ \begin{aligned} Q_3 &= l + \bigg(\frac{\frac{3(N)}{4} - F_<}{f}\bigg)\times h\\ &= 18.5 + \bigg(\frac{\frac{3*56}{4} - 30}{24}\bigg)\times 3\\ &= 18.5 + \bigg(\frac{42 - 30}{24}\bigg)\times 3\\ &= 18.5 + \big(0.5\big)\times 3\\ &= 18.5 + 1.5\\ &= 20 \text{ minutes} \end{aligned} $$
Thus, $75$ % of the students spent less than or equal to $20$ minutes on the internet.

Hope you find Quartile for grouped data calculator and step by step guide to find quartile for grouped data with examples and article educational and helpful.

Related Resources