Sample size required to test proportion
Use this calculator to find the minimum sample size required to estimate proportion $p$.
| Sample Size to test proportion | ||
|---|---|---|
| Confidence Level ($1-\alpha$) | ||
| Power ($1-\beta$) | ||
| Proportion under H0 : ($p_0$) | ||
| Proportion under H1 : ($p_1$) | ||
| Results | ||
| Effect Size ($ES$) | ||
| Z value: $Z_{1-\alpha/2}$ | ||
| Z value: $Z_{1-\beta}$ | ||
| Required Sample Size : ($n$) | ||
Sample size required to estimate proportion
The minimum sample size required to estimate the proportion is
$$ \begin{aligned} n &\approx \bigg(\frac{Z_{1-\alpha/2}+Z_{1-\beta}}{ES}\bigg)^2 \end{aligned} $$
where
$$ \begin{aligned} ES &\frac{|p_1-p_0|}{\sqrt{p_0*(1-p_0)}} \end{aligned} $$
- $p_0$ is the proportion under null hypothesis $H_0$
- $p_1$ is the proportion under alternative hypothesis $H_1$
- $Z_{1-\alpha/2}$ is the critical value of $Z$
- $Z_{1-\beta}$ is the aaaaaaaaa
- $ES$ is the effect size.