Chebyshev’s Inequality
Chebyshev’s Theorem
If $g(x)$ is a non-negative function and $f(x)$ be p.m.f. or p.d.f. of a random variable $X$, having finite expectation and if $k$ is any positive real constant, then
$$ \begin{equation*} P[g(x)\geq k] \leq \frac{E[g(x)]}{k}\quad \text{ and }\quad P[g(x) < k] \geq 1-\frac{E[g(x)]}{k} \end{equation*} $$
Proof
Discrete Case
Let $X$ be a discrete random variable with p.m.f. $f(x)$. Let $g(x)$ be a non-negative function of $X$. Then $E[g(x)] = \sum g(x)f(x)$.
Let us introduce a new random variable $Y$ such that
$$ \begin{equation*} Y=\left\{ \begin{array}{ll} 0, & \hbox{$g(x) < k$;} \\ k, & \hbox{$g(x) \geq k$.} \end{array} \right. \end{equation*} $$
Hence,
$$ \begin{eqnarray*} E(Y) & = & 0\cdot P[Y=0] + k \times P[Y=k]\\ &=& k\times P[Y=k]\\ & = & k \times P[g(x)\geq k]. \end{eqnarray*} $$
But $g(x) \geq Y$. Therefore $E[g(x)] \geq E[Y]$.
$$ \begin{eqnarray*} \therefore E[g(x)] &\geq & k\times P[g(x) \geq k]\\ \Rightarrow P[g(x)\geq k] &\leq & \dfrac{E[g(x)]}{k}. \end{eqnarray*} $$
By taking complement of the above probability, we get
$$ \begin{eqnarray*} P[g(x) < k] & = & 1- P[g(x) \geq k]\\ \text{i.e., } P[g(x) < k] &\geq & 1 -\frac{E[g(x)]}{k}. \end{eqnarray*} $$
Continuous Case
Let $X$ be a continuous random variable with p.d.f. $f(x)$ and $g(x)$ be a non-negative function of $X$. Let $S$ be the set of all $x$ for which $g(x)\geq k$, i.e., $S = { x | g(x) \geq k}$, so $\overline{S} = { x | g(x) < k}$.
$$ \begin{eqnarray*} E[g(x)] &=& \int_{-\infty}^{\infty} g(x) f(x) \; dx \\ &=& \int_S g(x) f(x) \;dx +\int_{\overline{S}}g(x) f(x) \; dx\\ &\geq & \int_S g(x) f(x) \;dx \;\;\text{ (since both the integrals are positive)}\\ & \geq & k \int_S f(x) \;dx \;\; \text{ (since $g(x) \geq k$)}\\ & \geq & k \times P[g(x)\geq k]. \end{eqnarray*} $$
Therefore,
$$ \begin{equation*} P[g(x)\geq k]\leq \frac{E[g(x)]}{k}. \end{equation*} $$
Taking complement, we get
$$ \begin{equation*} P[g(x)< k]\geq 1-\frac{E[g(x)]}{k}. \end{equation*} $$
Chebyshev’s Inequality
Let $X$ be a random variable with mean $\mu$ and finite variance $\sigma^2$. Then for any real constant $k>0$,
$$ \begin{equation*} P[|X-\mu| \geq k\sigma] \leq \frac{1}{k^2}\quad \text{ and }\quad P[|X-\mu|< k\sigma] \geq 1-\frac{1}{k^2} \end{equation*} $$
OR
If $\mu$ and $\sigma$ are the mean and the standard deviation of a random variable $X,$ then for any positive constant $k$, the probability is at least $1-\dfrac{1}{k^2}$ that $X$ will take on a value within $k$ standard deviations of the mean. In notation it can be written as
$$ \begin{equation*} P[|X-\mu|< k\sigma] \geq 1-\frac{1}{k^2} \end{equation*} $$
Proof
We know that $\sigma^2 = E(X-\mu)^2$.
Discrete Case
Let $X$ be a discrete random variable with p.m.f. $f(x)$.
$$ \begin{aligned} \sigma^2 &= E(X-\mu)^2 \\ &=\sum_x (x-\mu)^2 f(x) \\ &=\sum_{-\infty}^{\mu-k\sigma}(x-\mu)^2 f(x)+\sum_{\mu-k\sigma}^{\mu+k\sigma}(x-\mu)^2 f(x)\\ &\quad +\sum_{\mu+k\sigma}^{\infty}(x-\mu)^2 f(x) \end{aligned} $$
Since the second summand is nonnegative, we can form the inequality by deleting the second summation as
$$ \begin{equation}\label{eq1} \sigma^2 \geq \sum_{-\infty}^{\mu-k\sigma}(x-\mu)^2 f(x) +\sum_{\mu+k\sigma}^{\infty}(x-\mu)^2 f(x) \end{equation} $$
In the first part $x < \mu-k\sigma$ $\Rightarrow x-\mu< - k\sigma$ $\Rightarrow (x-\mu)^2\geq k^2\sigma^2$.
In the second part $x \geq \mu+k\sigma$ $\Rightarrow x-\mu\geq k\sigma$ $\Rightarrow (x-\mu)^2\geq k^2\sigma^2$.
Using these in \eqref{eq1}, we get
$$ \begin{eqnarray*} \sigma^2 &\geq & \sum_{-\infty}^{\mu-k\sigma}k^2\sigma^2 f(x) +\sum_{\mu+k\sigma}^{\infty}k^2\sigma^2 f(x) \\ \frac{1}{k^2} &\geq & \sum_{-\infty}^{\mu-k\sigma} f(x) +\sum_{\mu+k\sigma}^{\infty}f(x) \\ &\geq& P[X\leq \mu-k\sigma] + P[X\geq \mu +k\sigma]\\ &\geq& P[X-\mu \leq k\sigma] + P[X-\mu \geq k\sigma]\\ &\geq& P[|X-\mu| \geq k\sigma]\\ \text{i.e., } P[|X-\mu| \geq k\sigma]& \leq & \frac{1}{k^2}. \end{eqnarray*} $$
Taking complement, we get
$$ \begin{eqnarray*} P[|X-\mu| < k\sigma]& = & 1- P[|X-\mu|\geq k\sigma]\\ & \geq & 1-\frac{1}{k^2}. \end{eqnarray*} $$
Continuous Case
Let $X$ be a continuous random variable with p.d.f. $f(x)$.
$$ \begin{eqnarray*} \sigma^2 &=& E(X-\mu)^2 \\ &=&\int_x (x-\mu)^2 \cdot f(x)\; dx \\ &=&\int_{-\infty}^{\mu-k\sigma}(x-\mu)^2\cdot f(x)\; dx+\int_{\mu-k\sigma}^{\mu+k\sigma}(x-\mu)^2\cdot f(x)\; dx \\ & & +\int_{\mu+k\sigma}^{\infty}(x-\mu)^2 \cdot f(x)\; dx. \end{eqnarray*} $$
Since the integrand $(x-\mu)^2\cdot f(x)$ is nonnegative, we can form the inequality by deleting the second integral as
$$ \begin{equation}\label{eq2} \sigma^2 \geq \int_{-\infty}^{\mu-k\sigma}(x-\mu)^2\cdot f(x)\; dx +\int_{\mu+k\sigma}^{\infty}(x-\mu)^2\cdot f(x)\; dx \end{equation} $$
In the first part $x < \mu-k\sigma$ $\Rightarrow x-\mu< - k\sigma$ $\Rightarrow (x-\mu)^2\geq k^2\sigma^2$.
In the second part $x \geq \mu+k\sigma$ $\Rightarrow x-\mu\geq k\sigma$ $\Rightarrow (x-\mu)^2\geq k^2\sigma^2$.
Using these in \eqref{eq2}, we get
$$ \begin{eqnarray*} \sigma^2 &\geq & \int_{-\infty}^{\mu-k\sigma}k^2\sigma^2\cdot f(x)\; dx +\int_{\mu+k\sigma}^{\infty}k^2\sigma^2\cdot f(x)\; dx \\ \frac{1}{k^2} &\geq & \int_{-\infty}^{\mu-k\sigma} f(x)\; dx +\int_{\mu+k\sigma}^{\infty}f(x)\; dx \\ &\geq& P[X\leq \mu-k\sigma] + P[X\geq \mu +k\sigma]\\ &\geq& P[X-\mu \leq-k\sigma] + P[X-\mu \geq k\sigma]\\ &\geq& P[|X-\mu| \geq k\sigma] \end{eqnarray*} $$
$$ \begin{aligned} \text{i.e., } P[|X-\mu| \geq k\sigma]& \leq \frac{1}{k^2}. \end{aligned} $$
Taking complement, we get
$$ \begin{eqnarray*} P[|X-\mu| < k\sigma]& = & 1- P[|X-\mu|\geq k\sigma]\\ & \geq & 1-\frac{1}{k^2}. \end{eqnarray*} $$
Another Form of Chebyshev’s Inequality
Let $X$ be a random variable with mean $\mu$ and finite variance $\sigma^2$. Then for any real constant $k>0$,
$$ \begin{equation*} P[|X-\mu| \geq k] \leq \frac{\sigma^2}{k^2} \end{equation*} $$
and
$$ \begin{equation*} P[|X-\mu|< k] \geq 1-\frac{\sigma^2}{k^2} \end{equation*} $$
First inequality gives upper bound for the probability whereas the second inequality gives lower bound for the probability.