## Introduction

Confidence interval can be used to estimate the population parameter with the help of an interval with some degree of confidence. One such a parameter that can be estimated is a population mean.

In this article we will discuss step by step procedure to construct a confidence interval for population mean when the population standard deviation is known.

## Confidence Interval for Mean

Let $X_1, X_2, \cdots , X_{n}$ be a random sample of size $n$ from $N(\mu, \sigma^2)$ with known variance $\sigma^2$. Let $\overline{X} = \frac{1}{n} \sum X_i$ be the sample mean.

Let $C=1-\alpha$ be the confidence coefficient. We wish to construct a $100(1-\alpha)$% confidence interval of a population mean $\mu$ when $\sigma$ is known.

The margin of error for mean is \begin{aligned} E = Z_{\alpha/2} \frac{\sigma}{\sqrt{n}}. \end{aligned} Then, $100(1-\alpha)$% confidence interval for the population mean $\mu$ is \begin{aligned} \overline{X} - E \leq \mu \leq \overline{X} + E \end{aligned}

## Assumptions

a. The sample is a simple random sample.

b. The population standard deviation $\sigma$ is known.

c. The population has a normal distribution.

## Step by Step Procedure

Step by step procedure to estimate the confidence interval for mean is as follows:

### Step 2 Given information

Specify the given information, sample size $n$, sample mean $\overline{X}$ and population standard deviation.

### Step 3 Specify the formula

$100(1-\alpha)$% confidence interval for the population mean $\mu$ is \begin{aligned} \overline{X} - E \leq \mu \leq \overline{X} + E \end{aligned} where $E = Z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$.

### Step 4 Determine the critical value

Determine the critical value $Z_{\alpha/2}$ from normal statistical table that corresponds to the desired confidence level.

### Step 5 Compute the margin of error

The margin of error for mean is \begin{aligned} E = Z_{\alpha/2} \frac{\sigma}{\sqrt{n}}. \end{aligned}

### Step 6 Determine the confidence interval

$100(1-\alpha)$% confidence interval estimate for population mean is \begin{aligned} \overline{X} - E \leq \mu\leq \overline{X} + E \end{aligned}

Equivalently, $100(1-\alpha)$% confidence interval estimate of population mean is $\overline{X} \pm E$ or $(\overline{X} -E, \overline{X} +E)$.

That is the $100(1-\alpha)$% confidence interval estimate of population mean (when $\sigma$ is unknown) is

$$\bigg(\overline{X} -Z_{\alpha/2} \dfrac{\sigma}{\sqrt{n}}, \overline{X} +Z_{\alpha/2} \dfrac{\sigma}{\sqrt{n}}\bigg)$$