Weibull Distribution

A continuous random variable $X$ is said to have a Weibull distribution with three parameters $\mu$, $\alpha$ and $\beta$ if the random variable $Y =\big(\frac{X-\mu}{\beta}\big)^\alpha$ has the exponential distribution with p.d.f. $$ \begin{equation*} f(y) = e^{-y}, y>0. \end{equation*} $$

The probability density function of Weibull random variable $X$ is

$$ \begin{equation*} f(x;\alpha, \beta)=\left\{ \begin{array}{ll} \frac{\alpha}{\beta} \big(\frac{x-\mu}{\beta}\big)^{\alpha-1}e^{-\big(\frac{x-\mu}{\beta}\big)^\alpha}, & \hbox{$x>\mu$, $\alpha, \beta>0$;} \\ 0, & \hbox{Otherwise.} \end{array} \right. \end{equation*} $$

  • $\alpha$ is the shape parameter
  • $\beta$ is the scale parameter
  • $\mu$ is the location parameter.

Two-parameter Weibull Distribution

Let $\mu=0$. Then the pdf of two parameter Weibull distribution is given by $$ \begin{equation*} f(x;\alpha, \beta)=\left\{ \begin{array}{ll} \frac{\alpha}{\beta} \big(\frac{x}{\beta}\big)^{\alpha-1}e^{-\big(\frac{x}{\beta}\big)^\alpha}, & \hbox{$x>0$, $\alpha, \beta>0$;} \\ 0, & \hbox{Otherwise.} \end{array} \right. \end{equation*} $$

In two parameter Weibull distribution, if $\alpha=1$, then $X$ has an exponential distribution with parameter $\frac{1}{\beta}$.

$$ \begin{equation*} f(x) = \frac{1}{\beta} e^{-x/\beta}, x>0, \beta>0. \end{equation*} $$

Graph of Weibull Distribution

Standard Weibull Distribution

If we let $\mu=0$ and $\beta =1$, then the distribution of $X$ is called standard Weibull distribution. Then the pdf of standard Weibull distribution is

$$ \begin{equation*} f(x;\beta)=\left\{ \begin{array}{ll} \alpha x^{\alpha-1}e^{-x^\alpha}, & \hbox{$x>0$, $\beta>0$;} \\ 0, & \hbox{Otherwise.} \end{array} \right. \end{equation*} $$

In standard Weibull distribution, if we let $\alpha=1$, then the random variable $X$ has an exponential distribution with parameter $1$. $$ \begin{equation*} f(x) = e^{-x}, x>0. \end{equation*} $$

$r^{th}$ raw moment of Two-parameter Weibull Distribution

The $r^{th}$ raw moment of Two-parameter Weibull distribution is

$$ \begin{equation*} % \nonumber to remove numbering (before each equation) \mu_r^\prime = \beta^r \Gamma (\frac{r}{\alpha}+1) \end{equation*} $$

Proof

The $r^{th}$ raw moment of Two-parameter Weibull distribution is $$ \begin{eqnarray*} % \nonumber to remove numbering (before each equation) \mu_r^\prime &=& E(X^r) \\ &=&\int_0^\infty x^r f(x)\; dx\\ &=& \int_0^\infty x^r\frac{\alpha}{\beta} \big(\frac{x}{\beta}\big)^{\alpha-1}e^{-\big(\dfrac{x}{\beta}\big)^\alpha}\; dx \end{eqnarray*} $$ Let $\big(\dfrac{x}{\beta}\big)^\alpha = y$ $\Rightarrow \alpha\big(\dfrac{x}{\beta}\big)^{\alpha-1}\dfrac{1}{\beta}dx =dy$. $\Rightarrow \dfrac{\alpha}{\beta}\big(\dfrac{x}{\beta}\big)^{\alpha-1} dx = dy$.

Also, for $x=0$, $y=0$ and for $x=\infty$, $y=\infty$. Hence, $$ \begin{eqnarray*} % \nonumber to remove numbering (before each equation) \mu_r^\prime &=& \int_0^\infty \big(\beta y^{1/\alpha}\big)^re^{-y}\; dy\\ &=& \beta^r \int_0^\infty y^{\frac{r}{\alpha}+1-1}e^{-y}\; dy\\ &=& \beta^r \Gamma (\frac{r}{\alpha}+1) \end{eqnarray*} $$

Mean and Variance of Two-parameter Weibull Distribution

The mean and variance of Two-parameter Weibull distribution are $E(X) = \beta \Gamma (\dfrac{1}{\alpha}+1)$ and $V(X) = \beta^2 \bigg(\Gamma (\dfrac{2}{\alpha}+1) -\bigg(\Gamma (\dfrac{1}{\alpha}+1) \bigg)^2\bigg)$ respectively.

Proof

Letting $r=1$ in the $r^{th}$ raw moments, we have $$ \begin{equation*} E(X) = \mu_1^\prime = \beta \Gamma (\frac{1}{\alpha}+1). \end{equation*} $$

Letting $r=2$ in the $r^{th}$ raw moments, we have $$ \begin{equation*} E(X^2) = \mu_2^\prime = \beta^2 \Gamma (\frac{2}{\alpha}+1). \end{equation*} $$

Then the variance of $X$ is $$ \begin{eqnarray*} % \nonumber to remove numbering (before each equation) \text{Variance } & = & E(X^2) - [E(X)]^2\\ &=& \beta^2 \Gamma (\frac{2}{\alpha}+1) - \bigg(\beta \Gamma (\frac{1}{\alpha}+1) \bigg)^2\\ &=& \beta^2 \bigg(\Gamma (\frac{2}{\alpha}+1) -\bigg(\Gamma (\frac{1}{\alpha}+1) \bigg)^2\bigg). \end{eqnarray*} $$

Distribution function of Weibull Distribution

The distribution function of Three-parameter Weibull distribution is $$ \begin{equation*} % \nonumber to remove numbering (before each equation) F(x) = 1- e^{-\big(\frac{x-\mu}{\beta}\big)^\alpha}. \end{equation*} $$

Proof

Let $X\sim W(\mu,\alpha,\beta)$. Then the pdf of $X$ is $$ \begin{equation*} f(x;\alpha, \beta)=\left\{ \begin{array}{ll} \frac{\alpha}{\beta} \big(\frac{x-\mu}{\beta}\big)^{\alpha-1}e^{-\big(\frac{x-\mu}{\beta}\big)^\alpha}, & \hbox{$x>\mu$, $\alpha, \beta>0$;} \\ 0, & \hbox{Otherwise.} \end{array} \right. \end{equation*} $$ The distribution function of Weibull distribution is $$ \begin{eqnarray*} % \nonumber to remove numbering (before each equation) F(x) &=& P(X\leq x) \\ &=& \int_\mu^x f(x)\; dx\\ &=&\int_\mu^x \frac{\alpha}{\beta} \big(\frac{x-\mu}{\beta}\big)^{\alpha-1}e^{-\big(\frac{x-\mu}{\beta}\big)^\alpha}\; dx \end{eqnarray*} $$ Let $Y = -e^{-\big(\frac{x-\mu}{\beta}\big)^\alpha}$. Then $$ \begin{eqnarray*} \frac{dY}{dx} & = & -\bigg[- e^{-\big(\frac{x-\mu}{\beta}\big)^\alpha} \frac{\alpha}{\beta}\big(\frac{x-\mu}{\beta}\big)^{\alpha-1} \bigg]\\ &=& \frac{\alpha}{\beta}\big(\frac{x-\mu}{\beta}\big)^{\alpha-1}e^{-\big(\frac{x-\mu}{\beta}\big)^\alpha}\\ &=& f(x). \end{eqnarray*} $$ Thus $\int f(x) ; dx = Y$. Using this, the distribution function of $X$ is $$ \begin{eqnarray*} % \nonumber to remove numbering (before each equation) F(x) &=& \bigg[-e^{-\big(\frac{x-\mu}{\beta}\big)^\alpha} \bigg]_\mu^x \\ &=& \bigg[-e^{-\big(\frac{x-\mu}{\beta}\big)^\alpha} + e^{-\big(\frac{\mu-\mu}{\beta}\big)^\alpha} \bigg]\\ &=& 1- e^{-\big(\frac{x-\mu}{\beta}\big)^\alpha}. \end{eqnarray*} $$

Median of Weibull Distribution

The median of Three parameter Weibull distribution is $M=\mu+\beta(\log_e 2)^{1/\alpha}$

Proof

Let $M$ be the median of the distribution. $$ \begin{equation*} F(M) = P(X\leq M) =\frac{1}{2}. \end{equation*} $$ Thus $$ \begin{eqnarray*} % \nonumber to remove numbering (before each equation) & & F(M) =\frac{1}{2} \\ &\Rightarrow & 1- e^{-\big(\frac{M-\mu}{\beta}\big)^\alpha}=\frac{1}{2}\\ &\Rightarrow & e^{-\big(\frac{M-\mu}{\beta}\big)^\alpha}=\frac{1}{2}\\ &\Rightarrow &-\big(\frac{M-\mu}{\beta}\big)^\alpha=\log_e \frac{1}{2}\\ &\Rightarrow &\big(\frac{M-\mu}{\beta}\big)^\alpha=\log_e 2\\ &\Rightarrow & \big(\frac{M-\mu}{\beta}\big)=(\log_e 2)^{1/\alpha}\\ &\Rightarrow & M=\mu+\beta(\log_e 2)^{1/\alpha}. \end{eqnarray*} $$ Hence, median of the Weibull distribution is $M=\mu+\beta(\log_e 2)^{1/\alpha}$.

Mode of Weibull Distribution

The mode of three parameter Weibull distribution is $$ \begin{equation*} x_0 =\mu +\beta \bigg(\frac{\alpha-1}{\alpha}\bigg)^{1/\alpha}. \end{equation*} $$

Proof

Let $X\sim W(\mu,\alpha,\beta)$. Then the pdf of $X$ is $$ \begin{equation*} f(x;\alpha, \beta)=\left\{ \begin{array}{ll} \frac{\alpha}{\beta} \big(\frac{x-\mu}{\beta}\big)^{\alpha-1}e^{-\big(\frac{x-\mu}{\beta}\big)^\alpha}, & \hbox{$x>\mu$, $\alpha, \beta>0$;} \\ 0, & \hbox{Otherwise.} \end{array} \right. \end{equation*} $$ Taking $\log_e$, we get $$ \begin{equation*} \log_e f(x) = c + (\alpha-1)\log_e \big(\frac{x-\mu}{\beta}\big) - \bigg(\frac{x-\mu}{\beta}\bigg)^\alpha \end{equation*} $$ Differentiating w.r.t. $x$ and equating to zero, we get $$ \begin{eqnarray*} & & \frac{\partial \log_e f(x)}{\partial x}=0\\ \Rightarrow & &0+(\alpha-1) \frac{1}{(x-\mu)/\beta}\frac{1}{\beta}-\alpha \bigg(\frac{x-\mu}{\beta}\bigg)^{\alpha-1}\frac{1}{\beta}=0\\ \Rightarrow & &\frac{\alpha-1}{x-\mu} = \frac{\alpha}{\beta} \bigg(\frac{x-\mu}{\beta}\bigg)^{\alpha-1}\\ \Rightarrow & &\frac{\alpha-1}{\alpha} = \bigg(\frac{x-\mu}{\beta}\bigg)^{\alpha}\\ \Rightarrow & & \frac{x-\mu}{\beta} = \bigg(\frac{\alpha-1}{\alpha}\bigg)^{1/\alpha}\\ \Rightarrow & & x = \mu +\beta \bigg(\frac{\alpha-1}{\alpha}\bigg)^{1/\alpha}. \end{eqnarray*} $$ And $$ \begin{equation*} \frac{\partial^2 \log_e f(x)}{\partial x^2}=0\bigg|_{x=x_0}<0. \end{equation*} $$ Hence, mode of the Weibull distribution is $$ \begin{equation*} x_0 =\mu +\beta \bigg(\frac{\alpha-1}{\alpha}\bigg)^{1/\alpha}. \end{equation*} $$

Characterization of Weibull Distribution

Let $X_i$, $i=1,2,\cdots, n$ be i.i.d. random variables. Then $\min$ { $X_1,X_2,\cdots, X_n$} has a Weibull distribution if and only if the common distribution of $X_i$’s is a Weibull distribution.

Moment Generating Function

The moment generating function of Weibull distribution does not exist.

Hope this article helps you understand Weibull distribution and various proof related to Weibull distributions.

Related Resources