Definition of Normal Distribution
A continuous random variable $X$ is said to have an normal distribution with parameter $\mu$ and $\sigma$ if its p.d.f. is given by
$$ \begin{equation*} f(x)=\left\{ \begin{array}{ll} \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\big(\frac{x-\mu}{\sigma}\big)^2}, & \hbox{$-\infty< x<\infty ;-\infty < \mu < \infty; \sigma^2>0$;} \\ 0, & \hbox{Otherwise.} \end{array} \right. \end{equation*} $$
Normal Probability Calculator | |
---|---|
Mean ($\mu$) | |
Standard deviation ($\sigma$) | |
P(X< A) | |
P(X > B) | |
P(A< X < B) | and |
Outside A and B | and |
Results | |
Required Probability : |