Deciles Overview
Deciles divide a dataset into 10 equal parts, with 9 dividing points: D₁, D₂, …, D₉. Each decile represents 10% of the data. For example, D₁ is the value below which 10% of the data falls.
Deciles for Ungrouped Data
Formula
The formula for the i-th decile in ungrouped data is:
$$D_i = \text{Value of } \left(\frac{i(n+1)}{10}\right)^{th} \text{ observation, } i=1,2,…,9$$
where n is the total number of observations.
Example: Ungrouped Data
The daily sales (in hundreds of dollars) for 20 days:
12, 15, 18, 22, 25, 28, 30, 32, 35, 38, 40, 42, 45, 48, 50, 52, 55, 58, 60, 65
Find D₁, D₂, D₃, and D₉.
Solution:
The data is already arranged in ascending order with n = 20.
First Decile (D₁):
$$D_1 = \text{Value of } \left(\frac{1(20+1)}{10}\right)^{th} \text{ obs.} = \text{Value of } (2.1)^{th} \text{ obs.}$$
$$= 2^{nd} + 0.1(3^{rd} - 2^{nd}) = 15 + 0.1(18 - 15) = 15.3$$
Second Decile (D₂):
$$D_2 = \text{Value of } \left(\frac{2(20+1)}{10}\right)^{th} \text{ obs.} = \text{Value of } (4.2)^{th} \text{ obs.}$$
$$= 4^{th} + 0.2(5^{th} - 4^{th}) = 22 + 0.2(25 - 22) = 22.6$$
Third Decile (D₃):
$$D_3 = \text{Value of } \left(\frac{3(20+1)}{10}\right)^{th} \text{ obs.} = \text{Value of } (6.3)^{th} \text{ obs.}$$
$$= 6^{th} + 0.3(7^{th} - 6^{th}) = 28 + 0.3(30 - 28) = 28.6$$
Ninth Decile (D₉):
$$D_9 = \text{Value of } \left(\frac{9(20+1)}{10}\right)^{th} \text{ obs.} = \text{Value of } (18.9)^{th} \text{ obs.}$$
$$= 18^{th} + 0.9(19^{th} - 18^{th}) = 58 + 0.9(60 - 58) = 59.8$$
Deciles for Grouped Data
Formula
For grouped data:
$$D_i = L + \left(\frac{\frac{i \cdot N}{10} - CF}{f}\right) \times h$$
where:
- L = Lower class boundary of the decile class
- N = Total frequency
- CF = Cumulative frequency before the decile class
- f = Frequency of the decile class
- h = Class width
- i = 1, 2, 3, …, 9
Example: Grouped Data
| Class Interval | Frequency |
|---|---|
| 0-20 | 6 |
| 20-40 | 10 |
| 40-60 | 14 |
| 60-80 | 12 |
| 80-100 | 8 |
Find D₁, D₅, and D₉.
Solution:
Cumulative Frequencies:
| Class | f | CF |
|---|---|---|
| 0-20 | 6 | 6 |
| 20-40 | 10 | 16 |
| 40-60 | 14 | 30 |
| 60-80 | 12 | 42 |
| 80-100 | 8 | 50 |
N = 50
D₁ (First Decile):
Position = (1 × 50)/10 = 5
Decile class: 0-20
$$D_1 = 0 + \left(\frac{5 - 0}{6}\right) \times 20 = 16.67$$
D₅ (Fifth Decile - Median):
Position = (5 × 50)/10 = 25
Decile class: 40-60
$$D_5 = 40 + \left(\frac{25 - 16}{14}\right) \times 20 = 52.86$$
D₉ (Ninth Decile):
Position = (9 × 50)/10 = 45
Decile class: 80-100 (CF crosses 45 here)
$$D_9 = 80 + \left(\frac{45 - 42}{8}\right) \times 20 = 87.5$$
Decile Interpretation
| Decile | Meaning |
|---|---|
| D₁ | 10% of data falls below this value |
| D₂ | 20% of data falls below this value |
| D₅ | 50% of data falls below this value (median) |
| D₉ | 90% of data falls below this value |
Relationship to Other Measures
- D₁ = P₁₀ (First decile = 10th percentile)
- D₂ = P₂₀ (Second decile = 20th percentile)
- D₅ = P₅₀ = Q₂ (Fifth decile = Median = 50th percentile)
- D₇ = P₇₀ = Three-quarter point
- D₉ = P₉₀ (Ninth decile = 90th percentile)
Decile Class Width
The range from D₁ to D₉ represents 80% of the middle data (10% to 90%).
$$\text{Decile Range} = D_9 - D_1$$
This is useful for identifying the spread of the main bulk of your data while excluding extreme values.
Applications
- Income distribution analysis (e.g., top decile earners)
- Academic achievement levels (grouping students)
- Performance benchmarking
- Quality control and process monitoring
- Risk assessment and profiling