The interquartile range (IQR) is the range of the middle 50% of data. It’s robust to outliers and useful for understanding data spread and identifying unusual values.
Formula
IQR = Q3 - Q1
where:
Q1 = 25th percentile (first quartile)
Q3 = 75th percentile (third quartile)
Ungrouped Data
Process:
- Arrange data in order
- Find Q1 (25th percentile)
- Find Q3 (75th percentile)
- Calculate Q3 - Q1
Example: Dataset: 10, 15, 20, 25, 30, 35, 40 Q1 ≈ 17.5, Q3 ≈ 32.5 IQR = 32.5 - 17.5 = 15
Grouped Data
Use cumulative frequencies to locate Q1 and Q3 classes, then apply interpolation formulas.
Outlier Detection Using IQR
IQR Rule:
Lower Boundary = Q1 - 1.5 × IQR
Upper Boundary = Q3 + 1.5 × IQR
Outliers = Values outside these boundaries
When to Use IQR
✅ Best for:
- Outlier detection
- Robust dispersion measure
- Skewed data
- Box plot visualizations
- Data with extreme values
❌ Not best for:
- Parametric statistical tests
- Normal distribution assumption needed